|
STANDARD
SIST EN 302 454 V2.2.1:2018
ETSI EN 302 454 V2.2.1 (2018-08) Meteorological Aids (Met Aids); Radiosondes to be used in the 1 668,4 MHz to 1 690 MHz frequency range; Harmonised Standard for access to radio spectrum
HARMONISED EUROPEAN STANDARD SIST EN 302 454 V2.2.1:2018
ETSI ETSI EN 302 454 V2.2.1 (2018-08) 2
Reference REN/ERM-TGAERO-60 Keywords harmonised standard, radio, short range, testing, UHF ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00
Fax: +33 4 93 65 47 16
Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88
Important notice The present document can be downloaded from: The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at If you find errors in the present document, please send your comment to one of the following services: Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI. The copyright and the foregoing restriction extend to reproduction in all media.
© ETSI 2018. All rights reserved.
DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. oneM2M logo is protected for the benefit of its Members. GSM and the GSM logo are trademarks registered and owned by the GSM Association. SIST EN 302 454 V2.2.1:2018
ETSI ETSI EN 302 454 V2.2.1 (2018-08) 3 Contents Intellectual Property Rights . 5 Foreword . 5 Modal verbs terminology . 5 Introduction . 6 1 Scope . 7 2 References . 7 2.1 Normative references . 7 2.2 Informative references . 7 3 Definitions, symbols and abbreviations . 8 3.1 Definitions . 8 3.2 Symbols . 8 3.3 Abbreviations . 8 4 Technical requirements specifications . 9 4.1 Environmental profile . 9 4.2 Conformance requirements . 9 4.2.1 General Requirements . 9 4.2.2 Frequency error . 9 4.2.2.1 Definition . 9 4.2.2.2 Limits . 9 4.2.2.3 Conformance . 9 4.2.3 Carrier Power (conducted) . 9 4.2.3.1 Definition . 9 4.2.3.2 Limits . 9 4.2.3.3 Conformance . 10 4.2.4 Effective Radiated Power . 10 4.2.4.1 Definition . 10 4.2.4.2 Limits . 10 4.2.4.3 Conformance . 10 4.2.5 Modulation bandwidth . 10 4.2.5.1 Definition . 10 4.2.5.2 Limits . 10 4.2.5.3 Conformance . 10 4.2.6 Spurious emissions . 10 4.2.6.1 Definition . 10 4.2.6.2 Limits . 11 4.2.6.3 Conformance . 11 4.2.7 Frequency stability under low voltage conditions . 11 4.2.7.1 Definition . 11 4.2.7.2 Limits . 11 4.2.7.3 Conformance . 11 5 Conditions for measurements . 11 5.1 Presentation of the equipment for testing purposes . 11 5.1.1 General Considerations . 11 5.1.2 Choice of model for testing . 12 5.1.3 Testing of equipment with alternative power levels . 12 5.1.4 Testing of equipment that does not have an external 50 Ω RF connector (integral antenna equipment) . 12 5.1.4.1 Equipment with an internal permanent or temporary antenna connector . 12 5.1.4.2 Equipment with an internal permanent antenna . 12 5.1.5 Auxiliary test equipment . 12 5.2 General conditions for testing . 12 5.2.1 Test signals and modulation. 12 5.2.2 Artificial antenna . 12 SIST EN 302 454 V2.2.1:2018
ETSI ETSI EN 302 454 V2.2.1 (2018-08) 4 5.2.3 Test fixture . 13 5.2.4 Test sites and general arrangements for radiated measurements . 13 5.2.5 Modes of operation of the transmitter . 13 5.2.6 Measuring device . 13 5.3 Test conditions, power sources and ambient temperatures . 13 5.3.1 Normal and extreme test conditions. 13 5.3.2 Test power source . 14 5.3.2.1 External test power source . 14 5.3.2.2 Internal test power source . 14 5.3.3 Normal test conditions . 14 5.3.3.1 Normal temperature and humidity . 14 5.3.3.2 Normal test power source . 14 5.3.4 Extreme test conditions . 14 5.3.4.1 General . 14 5.3.4.2 Procedure for tests at extreme conditions . 15 5.3.4.3 Special Radiosondes. 15 5.3.4.4 Extreme test source voltages . 15 5.3.4.4.1 Power sources using batteries . 15 5.3.4.4.2 Other power sources . 15 6 Testing for compliance with technical requirements . 16 6.1 Environmental conditions for testing . 16 6.2 Interpretation of the measurement results . 16 6.3 Radio tests . 16 6.3.1 Frequency error . 16 6.3.2 Carrier Power (conducted) . 17 6.3.3 Effective Radiated Power . 17 6.3.4 Modulation bandwidth . 18 6.3.5 Spurious emissions . 18 6.3.5.1 General requirement . 18 6.3.5.2 Method of measuring the power level in a specified load, clause 6.3.5.1 a) i) . 19 6.3.5.3 Method of measuring the effective radiated power, clause 6.3.5.1 a) ii). 19 6.3.5.4 Method of measuring the effective radiated power, clause 6.3.5.1 b) . 20 6.3.6 Frequency stability under low voltage conditions . 20 Annex A (informative): Relationship between the present document and the essential requirements of Directive 2014/53/EU . 21 Annex B (informative): Change history . 22 History . 23
SIST EN 302 454 V2.2.1:2018
ETSI ETSI EN 302 454 V2.2.1 (2018-08) 5 Intellectual Property Rights Essential patents IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/). Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document. Trademarks The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. Foreword This Harmonised European Standard (EN) has been produced by ETSI Technical Committee Electromagnetic compatibility and Radio spectrum Matters (ERM). The present document has been prepared under the Commission's standardisation request C(2015) 5376 final [i.2] to provide one voluntary means of conforming to the essential requirements of Directive 2014/53/EU on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC [i.1]. Once the present document is cited in the Official Journal of the European Union under that Directive, compliance with the normative clauses of the present document given in table A.1 confers, within the limits of the scope of the present document, a presumption of conformity with the corresponding essential requirements of that Directive and associated EFTA regulations.
National transposition dates Date of adoption of this EN: 30 January 2018 Date of latest announcement of this EN (doa): 30 November 2018 Date of latest publication of new National Standard or endorsement of this EN (dop/e):
31 May 2019 Date of withdrawal of any conflicting National Standard (dow): 31 May 2019
Modal verbs terminology In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions). "must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. SIST EN 302 454 V2.2.1:2018
ETSI ETSI EN 302 454 V2.2.1 (2018-08) 6 Introduction Meteorological aids, Radiosondes, are light weight, disposable precision measurement instruments mainly used for in situ upper air measurements of meteorological variables (pressure, temperature, relative humidity, wind speed and direction) in the atmosphere up to an altitude of 36 km. The measurements are vital to international weather forecasting capability (and hence severe weather warning services for the public involving protection of life and property). The Radiosonde systems provide simultaneous measurements of the vertical profile of temperature, relative humidity as well as wind speed and direction. The variation of these meteorological variables in the vertical contains the majority of the critical information for weather forecasting. These systems are the only meteorological observing systems able to regularly provide the vertical resolution that meteorologists need for all five variables (i.e. pressure, temperature, relative humidity, wind speed and direction). Typically the Radiosonde observations are produced by Radiosondes measuring atmosphere for approximately 2 hours and carried by ascending balloons launched from land stations or ships. Radiosonde observations are carried out routinely by almost all countries, two to four times a day. The observation data is then circulated immediately to all other countries within a few hours via the WMO (World Meteorological Organization) Global Telecommunications System (GTS). The observing systems and data dissemination are all organized under the framework of the World Weather Watch Programme of WMO. The observation stations are required, worldwide, at a horizontal spacing of less than or equal to 250 km with a frequency of observation from one to four times per day. Remotely sensed measurements from satellites do not have the vertical resolution available from Radiosondes. Successful derivation of vertical temperature structure from these satellite measurements usually requires a computation initialized either directly from Radiosonde statistics or from the numerical weather forecast itself. In the latter case, the Radiosonde measurements ensure that the vertical structure in these forecasts remains accurate and stable with time. In addition, the Radiosonde measurements are used to calibrate satellite observations by a variety of techniques. Radiosonde observations are thus seen to remain absolutely necessary for meteorological operations for the foreseeable future. Other applications, independent of the main civilian meteorological organizations include environmental pollution, hydrology, radioactivity in the free atmosphere, significant weather phenomena (e.g. winter storms, thunderstorms, etc.) and investigation of a range of physical and chemical properties of the atmosphere. About 150 000 Radiosondes are annually used in Europe, about 10 % of them are in 1 680 MHz band. This use is not decreasing with time, since with modern automation it is now much easier to successfully operate systems without highly skilled operators and a large amount of supporting equipment. The Radiosondes use unidirectional transmission on two frequency bands: 403 MHz band covers primary and co-primary allocations from 400,15 MHz to 406 MHz and 1 680 MHz band from 1 668,4 MHz to 1 690 MHz. The 403 MHz Radiosonde technology applies GNSS (Global Navigation Satellite Systems) for wind measurement, whereas the 1 680 MHz systems may base the wind measurement on balloon tracking with a Radio Direction Finding antenna. Because the 403 MHz wind measurement depends on the availability of the GNSS signals, many operators do not consider this technology secure enough for critical applications (e.g. defence and national security), and consequently prefer 1 680 MHz systems. According to Recommendation ITU-R SA.1745 [i.5] the Mobile Satellite Service (MSS) is allocated in the band from 1 670 MHz to 1 675 MHz, and the sub band from 1 683 MHz to 1 690 MHz is used for meteorological satellite. Thus all administrations should strive to implement MetAids systems that limit their operations to the band 1 675 MHz to 1 683 MHz for Radiosondes. National regulatory conditions (channel/frequency separations or the inclusion of an automatic transmitter shut-off feature) for an individual/general license or license exemption may apply.
SIST EN 302 454 V2.2.1:2018
ETSI ETSI EN 302 454 V2.2.1 (2018-08) 7 1 Scope The present document specifies technical characteristics and methods of measurements for digitally modulated radiosondes operating in the range from 1 668,4 MHz to 1 690 MHz. NOTE 1: The present document does not cover radiosondes with an imbedded receiver. NOTE 2: The relationship between the present document and essential requirements of article 3.2 of Directive 2014/53/EU [i.1] is given in annex A. 2 References 2.1 Normative references References are specific, identified by date of publication and/or edition number or version number. Only the cited version applies. Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/. NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity. The following referenced documents are necessary for the application of the present document. [1] CISPR 16-1-1 (Edition 4.0) (09-2015): "Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-1: Radio disturbance and immunity measuring apparatus - Measuring apparatus". [2] ETSI TS 103 052 (V1.1.1) (03-2011): "Electromagnetic compatibility and Radio spectrum Matters (ERM); Radiated measurement methods and general arrangements for test sites up to 100 GHz". [3] ETSI EN 300 440 (V2.2.1) (07-2018): "Short Range Devices (SRD); Radio equipment to be used in the 1 GHz to 40 GHz frequency range; Harmonised Standard for access to radio spectrum". 2.2 Informative references References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies. NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity. The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area. [i.1] Directive 2014/53/EU of the European Parliament and of the Council of 16 April 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC. [i.2] Commission Implementing Decision C(2015) 5376 final of 4.8.2015 on a standardisation request to the European Committee for Electrotechnical Standardisation and to the European Telecommunications Standards Institute as regards radio equipment in support of Directive 2014/53/EU of the European Parliament and of the Council. [i.3] ETSI TR 100 028 (all parts) (V1.4.1): "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics". SIST EN 302 454 V2.2.1:2018
ETSI ETSI EN 302 454 V2.2.1 (2018-08) 8 [i.4] ETSI TR 100 028-2 (V1.4.1): "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2". [i.5] Recommendation ITU-R SA.1745: "Use of the band 1 668.4-1 710 MHz by the meteorological aids service and meteorological-satellite service (space-to-Earth)". 3 Definitions, symbols and abbreviations 3.1 Definitions For the purposes of the present document, the following terms and definitions apply: conducted measurements: measurements which are made using a direct 50 Ω connection to the EUT dedicated antenna: removable antenna supplied and tested with the radio equipment, designed as an indispensable part of the EUT integral antenna: permanent fixed antenna, which may be built-in, designed as an indispensable part of the equipment radiated measurements: measurements which involve the absolute measurement of a radiated field telemetry: use of radio communication for indicating or recording data at a distance 3.2 Symbols For the purposes of the present document, the following symbols apply: dB decibel E Field strength °C Temperature in degrees Celsius hPa Atmospheric pressure in hecto Pascal %RH Air relative humidity in percentage λ Wavelength 3.3 Abbreviations For the purposes of the present document, the following abbreviations apply: CISPR International Special Committee on Radio Interference DC Direct current ERP Effective Radiated Power EU European Union EUT Equipment Under Test FAR Fully Anechoic Room GNSS Global Navigation Satellite Systems GTS Global Telecommunications System ICAO International Civil Aviation Organization ITU-R International Telecommunication Union - Radiocommunication sector MSS Mobile Satellite Service RF Radio Frequency RH Relative Humidity RMS Root Mean Square VSWR Voltage Standing Wave Ratio WMO World Meteorological Organization SIST EN 302 454 V2.2.1:2018
ETSI ETSI EN 302 454 V2.2.1 (2018-08) 9 4 Technical requirements specifications 4.1 Environmental profile The technical requirements of the present document apply under the environmental profile for operation of the equipment, which shall be declared by the manufacturer, but as a minimum, shall be that specified in the test conditions contained in the present document. The equipment shall comply with all the technical requirements of the present document which are identified as
...