|
INTERNATIONAL ISO
STANDARD 15118-1
Second edition
2019-04
Road vehicles — Vehicle to grid
communication interface —
Part 1:
General information and use-case
definition
Véhicules routiers — Interface de communication entre véhicule et
réseau électrique —
Partie 1: Informations générales et définition de cas d'utilisation
Reference number
©
ISO 2019
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: [email protected]
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved
Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
3.1 General terms . 2
3.2 Control modes .13
3.3 Architecture channel .13
3.4 Forward and reverse power transfer .13
3.5 Minimum and maximum energy request limits .13
3.6 Source generator modes .14
4 Abbreviated terms .14
5 Requirements .15
5.1 List of requirements .15
5.2 General communication requirements .15
5.3 User-specific requirements .16
5.3.1 Reliability, availability, error handling and error reporting .16
5.3.2 Private data protection .17
5.3.3 Ease of use .17
5.4 OEM-specific requirements.17
5.5 Utility-specific requirements .18
5.5.1 Power limiting for grid control or local energy control .18
5.5.2 Current and voltage limits for EV supply equipment protection .19
5.5.3 Current and voltage limits for EV protection .19
5.5.4 Authorization of charging services .19
5.5.5 Authorization of energy transfer from the EV to the EV supply equipment .20
5.5.6 Retrofitting .20
5.6 Wireless communication requirements .20
5.6.1 General.20
5.6.2 Communication infrastructure requirements .20
5.7 RPT description .21
5.7.1 General.21
5.7.2 General information and requirements .22
5.8 Traceability requirements .22
6 Actors.23
7 Use case elements.24
7.1 General .24
7.2 Task groups .25
7.3 Task groups description .26
7.3.1 Start of communication process [A].26
7.3.2 Plug-in and forced HLC .28
7.3.3 WA1: discovery with reservation .29
7.3.4 Plug-in with concurrent IEC 61851-1 and HLC .29
7.3.5 WA2: discovery without reservation .30
7.4 Communication set-up [B] .31
7.4.1 EVCC/SECC conductive communication set-up .31
7.4.2 WB1: EVCC/SECC wireless communication set-up .32
7.5 Certificate handling [C] .32
7.5.1 Certificate update .32
7.5.2 Certificate installation .33
7.6 Identification and authorization [D] .35
7.6.1 Overview .35
7.6.2 Authorization using contract certificates performed at the EV supply
equipment . . .36
7.6.3 Authorization using contract certificates performed with the help of an SA .37
7.6.4 Authorization at the EV supply equipment using external credentials
performed at the EV supply equipment .39
7.6.5 Authorization at the EV supply equipment using external credentials
performed with the help of an SA .40
7.6.6 WD1: Authentication with prior reservation .41
7.7 Pairing and fine positioning.42
7.7.1 WP1: WPT fine positioning .42
7.7.2 WP2: WPT fine positioning without communication support .42
7.7.3 WP3: Conductive energy transfer pairing .43
7.7.4 WP4: WPT pairing .44
7.8 Target setting and energy transfer scheduling [E] .45
7.8.1 AC charging with load levelling based on HLC .45
7.8.2 WE1: WPT target setting and charge scheduling .46
7.8.3 Optimized charging with scheduling from secondary actors .46
7.8.4 DC charging with load levelling based on HLC . .48
7.8.5 Resume to authorized charging schedule .49
7.8.6 Reverse power transfer with load levelling based on HLC .50
7.8.7 Reverse power transfer on stand-alone operation .51
7.8.8 Fast responding energy transfer services based on dynamic control mode .52
7.8.9 Managed bidirectional power transfer into the grid and/or into the home .54
7.9 Energy transfer controlling and re-scheduling [F] .56
7.9.1 Energy transfer loop .56
7.9.2 Energy transfer loop with metering information exchange .57
7.9.3 WF1: WPT charging loop .58
7.9.4 Energy transfer loop with interrupt from the SECC .59
7.9.5 Energy transfer loop with interrupt from the EVCC or USER .59
7.9.6 Energy transfer control based on dynamic control mode .60
7.10 Value-added services [G] .62
7.10.1 Value-added services.6
...