How does a wind turbine spin slowly so that its voltage is high?

Introduction How does a wind turbine spin slowly so that its voltage is high? Although wind power generation has a slow speed, the fan used in wind power generation is very large. This type of fan can generate a lot of force with each rotation. Place

How does a wind turbine spin slowly so that its voltage is high?

Although the speed of wind power generation is slow, the fans used in wind power generation are very large. This type of fan can generate a lot of force with each rotation. This will therefore produce electricity.

Wind turbines use wind energy to turn machines, driving the generator rotor and causing the stator to produce electrical energy. There are two types of wind turbines: medium-high speed dual-feed type and low-speed permanent magnet type. The dual-feed unit is equipped with a gearbox that can change the speed of the blades from a low speed to over $1,000. a dozen revolutions at medium-high speed (above a thousand revolutions) to adapt to the generator to produce electricity.

The low speed permanent magnet generator can operate at a low speed of more than ten revolutionss due to its large number of magnetic poles and its ability to convert low-frequency electrical energy into industrial frequency electrical energy through a frequency converter for use. Therefore, although the wind speed is high, the rotation speed of the blade is very low, but suitable electrical energy can be produced and used using mechanical and electrical methods.

In single-phase power supply, the generator power is P=UIcosΦ. In three-phase power supply, the generator power is P=1. In three-phase power, the power is divided into. three types: power P and no power Q and apparent power S. The cosine of the phase difference (Φ) between voltage and current is called power factor, represented by the symbol cosΦ. Numerically, the power factor is the ratio between active power and apparent power.

That is to say that cosΦ=P/S. Lhe three powers and the power factor cosΦ are a right-angled power triangle relationship: the two right-angled sides are the power P and the non-power Q, and the hypotenuse is the apparent power S. In a three-phase load, these three powers always exist at the same time: S=P+Q S=√(P+Q) Apparent power S=1 Power P=1 No power Q=1 Power factor cosΦ=P/ S .

Notes

The main sources of wind are gravity and the sun. The sun causes uneven heating of the ground and atmosphere, leading to differences in density between atmospheres. of gravity, an atmospheric circulation is formed. The gas flow forms wind, which acts on the blades of the wind turbine, causing the blades to rotate, similar to a water turbine, and then drives the generator to do work, converting the wind energy into electrical energy.

The principle of wind energy production is actually the samethan that of hydroelectric production. They convert the mechanical energy existing in nature into electrical energy, which is an easy to transport and different form of use. , he benefits from the discovery of the electromagnetic effect.

The source of mechanical energy is due to the existence of Earth's gravity. The greater the water drop, the higher the pressure and the higher the efficiency of the generator drive. Hydroelectricity production begins with a hydraulic turbine. It is directly influenced by water, then the hydraulic turbine drives the generator.

Reference for the above content: Baidu Encyclopedia - Wind Turbine

The differences between horizontal axis and vertical axis wind turbines lie in the following aspects:

p>

p >1. Design method

For the design of horizontal axis wind turbine blades, the theory of moment blade elements is commonly used. The main methods include Glauert method, Wilson method, etc. but, Since blade element theory ignores flow interference between each blade element and airfoil resistance is ignored when designing blades using blade element theory, this simplification inevitably leads to inaccuracy in the results. This simplification has a negative impact on the blade. the shape design has a small impact, but it has a greater impact on the wind energy utilization rate of the wind turbine. At the same time, the interference between the blades of the wind wheel is also very strong, and the entire flow is very complex. It is impossible to obtain accurate results based on blade element theory alone.

The design of vertical axis wind turbine blades was formerly based on the horizontal axis design method and relieshas on the theory of blade elements. Since the flow of vertical axis wind turbine is more complex than that of horizontal axis, it is a typical large separation unsteady flow and is not suitable for analysis and design using blade element theory. This is also an important reason for the vertical axis. The wind turbine has not been developed for a long time.

2. Wind power utilization rate

The wind power utilization rate of large horizontal axis wind turbines is mainly calculated by blade designers and is generally above 40%. As mentioned earlier, due to flaws in the design method itself, the accuracy of wind energy usage calculated in this way is highly questionable. Of course, wind turbines at wind power plants will plot wind power curves based on measured wind speed and power output. ThisMeanwhile, the wind speed at that time is the wind speed measured by the anemometer on the back of the wind wheel. as the speed and power of the incoming wind. The curve is too high and needs to be corrected. After applying the correction method, the wind energy utilization rate of the horizontal axis will be reduced by 30-50%. Regarding the wind energy utilization rate of small horizontal axis wind turbines, the China Aerodynamic Research and Development Center has conducted relevant wind tunnel experiments, and the measured utilization rate is between 23% and 29%. %.

3. Structural characteristics

During rotation, the blades of the horizontal axis wind turbine are affected by the combined effects of the force of inertia and gravity. The direction of the inertial force changes at. at any time. The direction of gravity remains unchanged, the blade is therefore subjected to an alternating load, which is very detrimentalble to the fatigue resistance of the blade. In addition, horizontal axis generators are placed at an altitude of tens of meters, which brings a lot of inconvenience to the installation, maintenance and inspection of generators.

The blades of the vertical axis wind turbine are much better stressed during rotation than those of the horizontal axis. Since the direction of the force of inertia and gravity always remains unchanged, the blades are subjected to a constant load. The fatigue life is longer than that of horizontal axis wind rotors. At the same time, the vertical axis generator can be placed under the wind wheel or on the ground for easy installation and maintenance.

4. Start-up wind speed

There is a consensus that the start-up performance of horizontal axis wind turbines is good. However, depending on the wind speed of small horizontal axis wind turbines driven. the Re CenterAerodynamic Research and Development of China According to tunnel experiments, the starting wind speed is generally between 4-5 m/s, and the maximum reaches 5.9 m/s. Such startup performance is obviously unsatisfactory. There is also an industry consensus that the starting performance of vertical axis wind turbines is poor, especially for Darrieus Ф-type wind turbines, which have no self-starting capability, which is also a reason which limits the application of the vertical wind turbine. axis wind turbines. but, for the Darrieus type H wind wheel, there is the opposite conclusion. According to the author's research, as long as the aerodynamic profile and installation angle are correctly selected, fairly good starting performance can be achieved. Judging from tunnel experiments, the starting wind speed of this Darrieus-type H-shaped wind rotor has no bonly need 2 m/s. , which is better than the horizontal axis wind turbine mentioned above.

  • Popular Focus
  • Where is the cheapest battery wholesale?

    Where is the cheapest battery wholesale in Tangxia, Sanyuanli, Baiyun District? There is an enterprise specializing in the independent production of electric vehicles in Tangxia, Sanyuanli, Baiyun District, Baiyun Sanyuanli Avenue, Baiyun Sanyuanli Street
    08-02
  • Four 3.7V lithium batteries in series and parallel produce 7.4V/4.4A. How to reduce it to 4.8V/4.4A?

    Four 3.7V lithium batteries in series and parallel produce 7.4V/4.4A. I personally think it is impossible to reduce it to 4.8V/4.4A. Because the discharge platform of lithium batteries is generally set
    08-10
  • What are the materials of the negative electrodes of lithium batteries?

    What are the materials of the negative electrodes of lithium batteries? The main commercial applications of lithium batteries include graphite, which is a sheet of copper used to guide current and which does not react. another safe
    08-02
  • The difference between 18500 and 26500 batteries

    What is the difference between 18500 and 26500 batteries? The answer above is 18650. The person asking the question should ask what is the difference between 18505 and 26500 batteries. In the case of Fuant ER1
    08-02
  • What does 3.7V 80mAh written on a lithium battery mean?

    What does 3.7V 80mAh written on a lithium battery mean? 3.7 V, 80 mA = 0.08 A, H means 1 hour, or 3600 seconds. Taken together, it is
    08-02
  • How long does a lithium battery (cell phone battery) last?

    How long does a lithium battery (cell phone battery) last? The lifespan of mobile phone batteries, under normal conditions of use and without serious impact, the lifespan set by the manufacturer must be 5 years.
    08-02
  • Will lithium batteries explode when charging?

    Will lithium batteries explode when charged? Will lithium batteries explode when charged? Lithium battery explosions usually occur during the charging process, because the negative electrode material of lithium batteries is graphite or other carbon materi
    08-02
  • Parameters of lgdas31865 lithium battery

    Parameters of lgdas31865 lithium battery The parameters of lgdas31865 lithium battery are as follows: LGDAS31865 is a model 18650 lithium battery with a capacity of
    08-02
  • What are the main components of lithium battery electrolyte?

    What are the main components of lithium battery electrolyte? The composition of lithium battery electrolyte is shown below. 1. Ethylene carbonate: molecular formula C3H4O3. Colorless transparent liquid (>35℃), room temperature
    08-02
  • Who are the lithium battery manufacturers in Shandong?

    What are the lithium battery manufacturers in Shandong? Shandong Shengyang Power Supply Co., Ltd. and Shandong Weineng Environmental Protection Power Technology Co., Ltd. 1. Shandong Shengyang Power Supply Co., Ltd. is located in Shengyang, Qufu City.
    08-02
  • Types of drone batteries available in 2024

    Part 1. Types of drone batteries available in 2024In 2024, drone batteries have advanced significantly, offering a range of options to cater to various needs in
    07-30
  • How long does it take to charge 26650 battery?

    How long does it take to charge a 26650 battery? The charging time for a 26650 battery is generally between 3 and 6 hours, but the precise time depends on the power of the charger and the capacity of the battery. in general
    08-02
  • For what?Sure, here's an article based on the phrase "For what?

    The simple yet profound question, "For what?" often serves as a gateway to deeper reflections on purpose and intention. It is a query that invites us to delve into the reasons behind actions, decisions, and circumstances that shape our lives and the wor
    08-02
  • Choosing the Right Cart Battery

    This comprehensive guide will walk you through everything you need about cart batteries, from understanding different types to making an informed purchase decision.
    08-02
  • 30mAh~500mAh 3.7 V Li-ion Battery

    Welcome to Ufine's collection of 3.7V lithium-ion batteries ranging from 30mAh to 500mAh. Explore a diverse range of compact and lightweight batteries suitable for various electronic devices,
    08-02
  • Here are 10 essential facts about drone batteries for 2024.

    10 Key Facts About Drone Battery for 2024 In 2024, drone batteries have advanced significantly, offering a range of options to cater to various needs in the consumer, commercial, and industrial sectors. Below are the primary types of drone batteries avai
    08-02
  • Could you please explain the difference among IMR, ICR, INR, and IFR 18650 batteries?

    What is the Difference Between IMR, ICR, INR, and IFR 18650 Battery?In 18650 batteries, discerning the differences among IMR, ICR, INR, and IFR types is fundamental for tailored and efficient battery usage. These distinct
    08-02
  • Safety considerations for cart batteries

    Selecting the ideal cart battery is crucial for ensuring optimal performance and longevity of your electric vehicle or vaping device. This comprehensive guide w
    08-01